
Lecture 2 : Random variables and their distributions
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2.1 Random variables

Let (Ω,F) and (S,S) be two measurable spaces. A map X : Ω → S is measurable or
a random variable (denoted r.v.) if

X−1(A) ≡ {ω : X(ω) ∈ A} ∈ F for all A ∈ S

One can write {X ∈ A} or (X ∈ A) as a shorthand for {ω : X(ω) ∈ A} = X−1(A).
If (S,S) = (Rd,Rd), then X is called a d-dimensional random vector. R is the Borel
σ−field or the σ-field generated by the open subsets of Rn.

An indicator function is a classic example of a r.v. where S = {0, 1} and S is the
collection of all subsets of S. The indicator function of a set F ∈ F is defined as

1F (ω) =

{

1 if ω ∈ F

0 if ω /∈ F

If S = Ω, then the identity map on Ω is a r.v. iff S ⊂ F .

Fact : The composition of two measurable maps is measurable.

2.2 Generation of σ-field

Let A be a collection of subsets of Ω. The σ-field generated by A, denoted by σ(A),
is the smallest σ-field on Ω which contains A.

Let (Xi, i ∈ I) be a family of mappings of Ω into measurable spaces (Si,Si), i ∈
I. Here, I 6= φ is an arbitrary index set (i.e., possibly uncountable). The σ-field
generated by (Xi, i ∈ I), denoted by σ(Xi, i ∈ I), is the smallest σ−field on Ω with
respect to which each Xi is measurable. If we take A = ∪i(X

−1(Si)), this case reduces
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to the previous one. In both the above cases, ’smallest’ means the intersection of the
collection of σ-fields with the given property.

We now introduce product spaces and product σ−fields. Given (S,S) and index set
I, let Ω =

∏

i (Si) = {(ωi, i ∈ I) : ωi ∈ Si}, where each Si is a copy of S. We
have ω = (ωi ∈ I) ∈ Ω and projection maps Xi : Ω → Si such that Xi(ω) = ωi.
The product σ-field F on Ω is the σ-field generated by the projections, i.e., F =
σ((X−1(Fi)) : Fi ∈ Fi).

2.3 Checking measurability

Theorem 2.1 Let (Ω,F) be a measurable space and X : Ω → S. If S has the σ-field
σ(A) for an arbitrary collection of sets A, then X is measurable iff (X ∈ A) ∈ F for
A ∈ A.

Proof: We first prove the reverse direction. Since {X ∈ A} = {ω : X(ω) ∈ A} =
X−1(A), we have

X−1(Ac) = (X−1(A))c

X−1

(

⋃

i

Ai

)

=
⋃

i

X−1(Ai)

X−1

(

⋂

i

Ai

)

=
⋂

i

X−1(Ai)

Thus, X−1(σ(A)) = σ(X−1(A)).

To prove the forward direction, note that the collection C of subsets of S given by
C = {B ⊂ S : X−1(B) ∈ F} is a σ-field which contains A and hence σ(A) which is
the σ-field generated by A.

Similarly, if S has the σ-field σ(Yi, i ∈ I), X is measurable iff each Yi◦X is measurable.

2.4 Real and extended real random variables

Let S be a metric or topological space. The Borel σ-field on S, denoted by B(S), is
the σ-field generated by open subsets of S. If f : S → T is a continuous function,
then f is measurable from (S,B(S)) to (T,B(T )) by the previous theorem.

If (S,S) = (R,R), then some possible choices of A are {(−∞, x] : x ∈ R} or
{(−∞, x) : x ∈ Q} where Q = the rationals.



Lecture 2: Random variables and their distributions 2-3

For the real line R = (−∞,∞) and extended real line R̄ = [−∞,∞], the Borel σ-fields
can be defined as follows.

B(R) = σ{(−∞, x], x ∈ R}

B(R̄) = σ{[−∞, x], x ∈ R̄}

Definition 2.2 (Real Random Variable) Let (Ω,F) be a measurable space. A
real random variable (r.r.v.) is a measurable map from Ω to R.

Thus a function X with range R is a r.v. iff (X ≤ x) ∈ F for all x ∈ R (by theorem
2.1). Similarly, extended real random variables (e.r.r.v.) can be defined on range R̄.

Operations on real numbers are performed pointwise on real-valued functions, e.g.,

Z = X + Y means Z(ω) = X(ω) + Y (ω) for all ω ∈ Ω

and Z = lim
n

Zn means Z(ω) = lim
n

Zn(ω) for all ω ∈ Ω

Notation for real numbers: x ∨ y = max(x, y), x ∧ y = min(x, y), x+ = x ∨ 0,
x− = −(x ∧ 0). Note that |x| = x+ + x− and x = x+ − x−.

Theorem 2.3 If X1, X2, . . . are e.r.r.v.’s on (Ω,F), then they are closed under all
limiting operations, i.e.,

inf
n

Xn, sup
n

Xn, lim inf
n

Xn, lim sup
n

Xn

are also e.r.r.v.

Proof: Since the infimum of a sequence is < a iff some term is < a, we have

{

inf
n

Xn < a
}

=
⋃

n

{Xn < a} ∈ F

The proof for supremum follows similarly.

For limit inferior of Xn, we have

lim inf
n→∞

Xn := sup
n

{ inf
m≥n

Xm} =↑ lim
n
{ inf

m≥n
Xm}

Now note that Yn = infm≥n Xm is an e.r.r.v. for each n and so supn Yn is also an
e.r.r.v. The proof for limit superior follows similarly.
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From the above proof we see that

Ω0 ≡
{

ω : lim
n→∞

Xn exists
}

=

{

ω : lim sup
n→∞

Xn − lim inf
n→∞

Xn = 0

}

is a measurable set. If Xn(ω) converges for all ω, i.e., P(Ω0) = 1, we say that Xn

converges almost surely to X which is also a e.r.r.v.

Definition 2.4 (Simple Random Variable) X is a simple random variable iff X
is a finite linear combination of indicators, i.e., X can be expressed as X(ω) =
∑n

i=1
ci1Ai

(ω) where ci ∈ R and Ai ∈ F . A simple r.v. can only take finitely many
values.

Theorem 2.5 Every real r.v. X is a pointwise limit of a sequence of simple r.v.’s,
which can be taken to be increasing if X ≥ 0.

Proof: For X ≥ 0 let,

Xn =

{

k−1

2n on {k−1

2n ≤ X < k
2n }, 0 ≤ k ≤ n2n

n on {X ≥ n}

Then Xn ↑ X. For general X use the decomposition X = X+ − X−.

Corollary 2.6 Let X and Y be real valued r.v.’s. Then so are XY , X + Y , X − Y ,
min(X, Y ), max(X, Y ).

Proof: Consider Xn ↑ X and Yn ↑ Y . This implies XnYn ↑ XY . Similarly, use the
previous theorem to pass from simple case to the more general cases.

2.5 Probability distribution on the real line

If X is a real r.v. defined on some probability space (Ω,F , P), then X induces a
probability measure on R called its distribution. Consider µ(B) = P(X ∈ B) =
P(X−1(B)) as a function of Borel sets B of R . To show that µ is a probability
measure one can observe that for disjoint Bi’s,

µ(∪iBi) = P(X−1(∪iBi)) = P(∪iX
−1(Bi)) =

∑

i

P(X−1(Bi)) =
∑

i

µ(Bi)
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Commonly, the distribution of a r.v. X on reals is described by its cumulative dis-
tribution function (cdf), F (x) = P(X ≤ x). In general, for a probability measure
induced by r.v. X on R, we can consider a point function F (x) := F ((−∞, x]) (by
abuse of notation).

Theorem 2.7 A cdf F of some probability measure on R has the following properties:

1. F is an increasing function of x.

2. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0

3. F is right continous, i.e., limy↓x F (y) = F (x)

Proof: Refer to Theorem 1.1. in Durrett on page 4.

Theorem 2.8 If F satisfies the properties of Theorem 2.7, then it is the distribution
function of some r.v. and there is a unique probability measure on (R,R) that has
µ((a, b]) = F (b) − F (a) for all a, b.

Proof: Let F : R → (0, 1) have properties 1, 2, 3 in Theorem 2.5. We construct a
r.v. with distribution function F carried by (Ω,F , P) = ((0, 1),B(0, 1), Leb). Define

X+(ω) := inf{z : F (z) > ω} = sup{y : F (y) ≤ ω}

X−(ω) := inf{z : F (z) ≥ ω} = sup{y : F (y) < ω}

Figure 2.1 shows cases to consider carefully. We have (ω ≤ F (c)) ⇒ (ω : X−(ω) ≤ c)
by definition. Now, (z > X−(ω)) ⇒ (F (z) ≥ ω), and so by right continuity of F ,
(X−(ω) ≤ c) ⇒ (ω ≤ F (X−(ω)) ≤ F (c)). Thus (ω ≤ F (c)) ⇔ (X−(ω) ≤ c) so that
P(X− ≤ c) = F (c). The variable X− therefore has distribution function F , and we
call its probability law L. Here, L is the unique probability measure on (R,B) such
that L(∞, x] = F (x), ∀x.

Now, by definition of X+, (ω < F (c)) ⇒ (X+(ω) ≤ c), So F (c) ≤ P(X+ ≤ c). Since
X− ≤ X+, {X− 6= X+} =

⋃

c∈Q{X
− ≤ c < X+} by the denseness of the rational

numbers. However, for every c ∈ R, P(X− ≤ c < X+) = P({X− ≤ c} \ {X+ ≤ c}) ≤
F (c) − F (c) = 0. Since, Q is countable, the result follows.

Having proved the existence of a r.v. X with distribution function F , the uniqueness
can be checked easily by the π − λ theorem.
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Figure 2.1: An illustration of some of the important cases to consider in the construc-
tion of X− and X+.


