Lecture 2 : Random variables and their distributions

STAT205 Lecturer: Jim Pitman Scribe: Saurabh Amin <amins@berkeley.edu>

2.1 Random variables

Let (©,F) and (S, S) be two measurable spaces. A map X : Q — S is measurable or
a random variable (denoted r.v.) if

XM A)={w: X(w)e Ay e Fforal A€ S

One can write {X € A} or (X € A) as a shorthand for {w : X(w) € A} = X1(A4).
If (S,8) = (R4 RY), then X is called a d-dimensional random vector. R is the Borel
o—field or the o-field generated by the open subsets of R™.

An indicator function is a classic example of a r.v. where S = {0,1} and S is the
collection of all subsets of S. The indicator function of a set F' € F is defined as

lifwe F
1 p—
r() {Oﬁw¢F

If S =, then the identity map on Q is ar.v. iff S C F.

Fact: The composition of two measurable maps is measurable.

2.2 Generation of o-field

Let A be a collection of subsets of Q. The o-field generated by A, denoted by o(.A),
is the smallest o-field on €2 which contains A.

Let (X;,i € I) be a family of mappings of € into measurable spaces (S5;,S;), i €
I. Here, I # ¢ is an arbitrary index set (i.e., possibly uncountable). The o-field
generated by (X;,i € I), denoted by o(X;,7 € I), is the smallest c—field on €2 with
respect to which each X; is measurable. If we take A = U;(X ~(8;)), this case reduces

2-1



Lecture 2: Random variables and their distributions 2-2

to the previous one. In both the above cases, ’smallest’” means the intersection of the
collection of o-fields with the given property.

We now introduce product spaces and product o—fields. Given (S, S) and index set
I, let Q = [ (S) = {(wi,i € I) : w; € S;}, where each S; is a copy of S. We
have w = (w; € I) € Q and projection maps X; : Q& — S; such that X;(w) = w;.
The product o-field F on 2 is the o-field generated by the projections, i.e., F =
(X U(F)) : F € F).

2.3 Checking measurability

Theorem 2.1 Let (2, F) be a measurable space and X : Q@ — S. If S has the o-field
o(A) for an arbitrary collection of sets A, then X is measurable iff (X € A) € F for
Ac A

Proof: We first prove the reverse direction. Since {X € A} = {w : X(w) € A} =
X~1(A), we have

XA = (X1 (A)°
X_l (UAZ> = UX_I(AZ)
X! (ﬂ A,-) =X (4)

Thus, X' (o(A)) = o(X1(A)).

To prove the forward direction, note that the collection C of subsets of S given by
C={BcCS:XYB)e F}is a o-field which contains A and hence o(.A) which is
the o-field generated by A. [ |

Similarly, if S has the o-field o(Y;, i € I), X is measurable iff each Y;o X is measurable.

2.4 Real and extended real random variables

Let S be a metric or topological space. The Borel o-field on S, denoted by B(S), is
the o-field generated by open subsets of S. If f : S — T is a continuous function,
then f is measurable from (S, B(S)) to (T, B(T)) by the previous theorem.

If (S,S8) = (R,R), then some possible choices of A are {(—oo0,z] : x € R} or
{(=o00, ) : x € Q} where Q = the rationals.
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For the real line R = (—o00, 00) and extended real line R = [—00, 0c], the Borel o-fields
can be defined as follows.

B(R) = o{(~00,1], 7 € R}
B(R) = o{[~00, 1],z € R}

Definition 2.2 (Real Random Variable) Let (Q, F) be a measurable space. A
real random variable (r.r.v.) is a measurable map from € to R.

Thus a function X with range R is a r.v. iff (X <) € F for all z € R (by theorem
2.1). Similarly, extended real random variables (e.r.r.v.) can be defined on range R.

Operations on real numbers are performed pointwise on real-valued functions, e.g.,

Z =X +Y means Z(w) = X(w) + Y (w) for all w € Q
and Z = lim Z,, means Z(w) = 1mZ (w) for all w € Q2

Notation for real numbers: =V y = max(z,y), v Ay = min(z,y), ¥ = x V0,
x~ = —(z A0). Note that |z| = 2+ + 2~ and 2 = 2+ — ™.

Theorem 2.3 If X1, Xy,... are e.r.r.v.’s on (2, F), then they are closed under all
limiting operations, i.e.,

inf X,,, sup X,,, liminf X,,, limsup X,
n n n n
are also e.r.r.v.

Proof: Since the infimum of a sequence is < a iff some term is < a, we have
{iann < a} = U{X" <a}eF
n
n

The proof for supremum follows similarly.

For limit inferior of X,,, we have
liminf X,, := sup{ ir;f X} =T lim{ ir;f Xm}

Now note that Y, = inf,,>, X,, is an er.r.v. for each n and so sup, Y, is also an
e.r.r.v. The proof for limit superior follows similarly. ]
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From the above proof we see that

Oy = {w : lim X, exists } = {u) :limsup X,, — liminf X,, = O}

n—00 n—00 n—00

is a measurable set. If X, (w) converges for all w, i.e., P()) = 1, we say that X,
converges almost surely to X which is also a e.r.r.v.

Definition 2.4 (Simple Random Variable) X is a simple random variable iff X
is a finite linear combination of indicators, i.e., X can be expressed as X(w) =
Sov o cila,(w) where ¢; € R and A; € F. A simple r.v. can only take finitely many
values.

Theorem 2.5 Fvery real r.v. X s a pointwise limit of a sequence of simple r.v.’s,
which can be taken to be increasing if X > 0.

Proof: For X > 0 let,

2 2

X, — Elon (<X < £} 0<k<n2n
non {X >n}

Then X,, T X. For general X use the decomposition X = X* — X, [ ]

Corollary 2.6 Let X and Y be real valued r.v.’s. Then so are XY, X +Y, X -V,
min(X,Y), max(X,Y).

Proof: Consider X,, T X and Y,, T Y. This implies X,,Y,, T XY . Similarly, use the
previous theorem to pass from simple case to the more general cases. [ ]

2.5 Probability distribution on the real line

If X is a real r.v. defined on some probability space (€2, F,P), then X induces a
probability measure on R called its distribution. Consider u(B) = P(X € B) =
P(X~Y(B)) as a function of Borel sets B of R . To show that u is a probability
measure one can observe that for disjoint B;’s,

p(UiBi) = P(XHU;By)) = P(UiXTH(By)) = ZP(X_I(BO) = ZM(Bz‘)
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Commonly, the distribution of a r.v. X on reals is described by its cumulative dis-
tribution function (cdf), F(z) = P(X < x). In general, for a probability measure
induced by r.v. X on R, we can consider a point function F(z) := F((—o0,z]) (by
abuse of notation).

Theorem 2.7 A cdf F' of some probability measure on R has the following properties:

1. F is an increasing function of x.
2. lim, oo F(z) =1 and lim,_,_o F(x) =0

3. F'is right continous, i.e., lim,, F(y) = F(z)

Proof: Refer to Theorem 1.1. in Durrett on page 4. ]

Theorem 2.8 If F' satisfies the properties of Theorem 2.7, then it is the distribution
function of some r.v. and there is a unique probability measure on (R, R) that has
w((a, b)) = F(b) — F(a) for all a,b.

Proof: Let F' : R — (0,1) have properties 1,2,3 in Theorem 2.5. We construct a
r.v. with distribution function F' carried by (Q, F,P) = ((0,1), B(0,1), Leb). Define

Xt w):=inf{z: F(2) >w} =sup{y : Fy) <w}
X (w):=inf{z: F(z) >w} =sup{y: Fy) <w}

Figure 2.1 shows cases to consider carefully. We have (w < F(¢)) = (w: X~ (w) < ¢)
by definition. Now, (z > X (w)) = (F(z) > w), and so by right continuity of F,
(X (w)<e¢)= (w< F(X (w) < Fle)). Thus (w < F(c)) & (X (w) < ¢) so that
P(X~ < ¢) = F(c¢). The variable X~ therefore has distribution function F, and we
call its probability law £. Here, £ is the unique probability measure on (R, B) such
that L(o0, z] = F(x), V.

Now, by definition of X, (w < F(c)) = (X*(w) < ¢), So F(c) < P(X* < ¢). Since
X7 < X7 {X™ # X7} = Ue.eof X~ < ¢ < X7} by the denseness of the rational
numbers. However, for every c € R, P(X~ < ¢ < XT) =P{X™ <} \{XT <¢}) <
F(c) — F(c) =0. Since, Q is countable, the result follows.

Having proved the existence of a r.v. X with distribution function F', the uniqueness
can be checked easily by the m — A theorem. [ ]
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Figure 2.1: An illustration of some of the important cases to consider in the construc-
tion of X~ and X .



